Introduction to OpenACC

Jeff Larkin

Some slides courtesy of John
Levesque.

OpenAcCC. What is OpenACC?

DIRECTIVES FOR ACCELERATORS

* A common directive programming model for today’s GPUs
— Announced at SC11 conference

— Offers portability between compilers
* Drawn up by: NVIDIA, Cray, PGI, CAPS
* Multiple compilers offer portability, debugging, permanence

— Works for Fortran, C, C++
e Standard available at www.OpenACC-standard.org
* Initially implementations targeted at NVIDIA GPUs

* Current version: 1.0 (November 2011)
— Version 2.0 RFC released at SC12

 Compiler support:
— Cray CCE: nearly complete
— PGI Accelerator: released product in 2012
— CAPS: released product in Q1 2012

CAPS CRANY @4 NVIDIA. The Portland Group

THE SUPERCOMPUTER COMPANY

OpenACC Portability Goals

 Compiler Portability
— Different compilers should support the same directives/
pragmas and runtime library
— Work is currently underway to standardize a compliance test

suite.

* Device Portability
— Designed to be high level enough to support any of today’s or
tomorrow’s accelerators.
— Eliminate the need for separate code branches for CPU and

GPUs.

* Performance Portability
— Since OpenACC only annotated the code, well-written code
should perform well on either the CPU or GPU

OPENACC BASICS

Important Directives to Know

* !Sacc parallel

— Much like ! Somp parallel, defines aregion
where loop iterations may be run in parallel

— Compiler has the freedom to decompose this
however it believes is profitable

e !Sacc kernels

— Similar to parallel, but loops within the kernels region

will be independent kernels, rather than one large
kernel.

— Independent kernels and associated data transfers
may be overlapped with other kernels

Important Directives to Know

e !Sacc data

— Defines regions where data may be left on the device

— Useful for reducing PCle transfers by creating

temporary arrays or leaving data on device until
needed

* !Sacc host data

— Define a region in which host (CPU) arrays will be
used, unless specified with use device ()

— Useful for overlapping with CPU computation or
calling library routines that expect device memory

Important Directives to Know

e !Sacc wait
— Synchronize with asynchronous activities.

— May declare specific conditions or wait on all
outstanding requests

e !Sacc update
— Update a host or device array within a data region
— Allows updating parts of arrays

Important Directives to Know

e !Sacc loop

— Useful for optimizing how the compiler treats
specific loops.

— May be used to specify the decomposition of the
work

— May be used to collapse loop nests for additional
parallelism

— May be used to declare kernels as independent of
each other

Important Terminology

Gang

— The highest level of parallelism, equivalent to CUDA Threadblock. (hnum_gangs
=> number of threadblocks)

— A “gang” loop affects the “CUDA Grid”
Worker

— A member of the gang, equivalent to CUDA thread within a threadblock
(num_workers => threadblock size)

— A “worker” loop affects the “CUDA Threadblock”
Vector

— Tightest level of SIMT/SIMD/Vector parallelism, equivalent to CUDA warp or
SIMD vector length (vector_length should be a multiple of warp size)

— A ‘vector” loop affects the SIMT parallelism

Declaring these on particular loops in your loop nest will affect the
decomposition of the problem to the hardware

USING OPENACC

ldentify High-level, Rich Loop Nests

* Use your favorite profiling tool to identify
hotspots at the highest level possible.

— If there’s not enough concurrency to warrant

CUDA, there’s not enough to warrant OpenACC
either.

CrayPAT Loop-level profile

100.0% | 117.646170 | 13549032.0 |Total

[l 10.7% | 12.589734 | 2592000.0 |parabola

31 7.1% | 8.360290 | 1728000.0 |remap .LOOPS
4|1 | I | remap_
| I | ppmlr_

| | 3.708452 | 768000.0 |sweepx2 .LOOP.2.1i.35
| | I | sweepx2 .LOOP.1.1i.34
| I I | sweepx2 .LOOPS

| | | | sweepx2

| | | | vhone

| 3.1% | 3.663423 | 768000.0 |sweepxl .LOOP.2.1i.35
| | I | sweepxl .LOOP.1.1i.34
| I I | sweepxl .LOOPS

| | | | sweepxl

| | | | vhone

|

3.6% | 4.229443 | 864000.0 |ppmlr

| | | 384000.0 |sweepx2 .LOOP.2.1i.35
| | | | sweepx2 .LOOP.1.1i.34
| | | | sweepx2 .LOOPS

| | | | sweepx2__

| | | | vhone

| 1.6% | 1.852820 | 384000.0 |sweepxl .LOOP.2.1i.35
| | | | sweepxl .LOOP.1.1i.34
| | | | sweepxl .LOOPS

| | | | sweepxl _

| | | | vhone

—Oo0oONOoOOULdOJdIOOULA—W—RFROOONOKFKE OOWONO—

Place OpenMP On High-level Loops

* Using OpenMP allows debugging issues of
variable scoping, reductions, dependencies,
etc. easily on the CPU

— CPU toolset more mature
— Can test anywhere

* Cray will soon be releasing Reveal, a product
for scoping high-level loop structures.

 Who knows, this may actually speed-up your
CPU code!

Focus on Vectorizing Low-Level Loops

* Although GPUs are not strictly vector

processors, vector inner loops will benefit
both CPUs and GPUs

— Eliminate dependencies
— Reduce striding

— Remove invariant logic

 Compiler feedback is critical in this process

Finally, Add OpenACC

* Once High-Level parallelism with OpenMP and Low-Level vector
parallelism is exposed and debugged, OpenACC is easy.

#ifdef OPENACC

!Sacc parallel loop private(k,j,i,n,r, p, e, q, u, v, w,&
1Sacc& svelO,xa, xa0, dx, dx0, dvol, £, flat, &

1Sacc& para,radius, theta, stheta) reduction (max:svel)
#else

!Somp parallel do private(k,j,i,n,r, p, e, q, u, v, w,&
ISomp& svelO,xa, xa0, dx, dx0, dvol, £, flat,s&

ISomp& para,radius, theta, stheta) reduction (max:svel)
#endif

Differences between OpenMP and OpenACC

* Things that are different between OpenMP and OpenACC
— Cannot have CRITICAL REGION down callchain
— Cannot have THREADPRIVATE
— Vectorization is much more important
— Cache/Memory Optimization much more important
— No EQUIVALENCE
— Private variables not necessarily initialized to zero.

* Currently both OpenMP and OpenACC must be included in the source

#ifdef OPENACC

!Sacc parallel loop private(k,j,i,n,r, p, e, q, u, v, w,&
1Sacc& svelO,xa, xa0, dx, dx0, dvol, £, flat, para,radius, &
1Sacc& theta, stheta) reduction (max:svel)

#else

!Somp parallel do private(k,j,i,n,r, p, e, q, u, v, w, svelO,&
ISomp& xa, xal0, dx, dx0, dvol, £, flat, para,radius, &

ISomp& theta, stheta) reduction (max:svel)

#endif

45.
46.
47.
48.
49.
50.
51.
52.
53.
55.
56.
57.
58.
59.
62.
63.
64.
65.
66.
67.
68.
69.
71.
2.
73.
74.
75.
76.
7.
79.
80.
81.
82.

[EONONONONONONONONONONONONONONONOO OO IORO RO RGO I ORI DR RO RO

QU QU OUOUUOUUOUUUOUUOUuOuuuuaouuyuuauuuyuuauy
W W wWwwwwwwwwwwwwwwwwwwww

Compiler list for SWEEPX1

QU QO QU wuwuyuuauawuuw

#ifdef GPU

!Sacc parallel loop private(k,j,i,n,r, p, e, q, u, v, w, svell,&

'Saccé xa, xal, dx, dx0, dvol, f, flat, para,radius, theta, stheta)sé&
!Saccé reduction (max:svel)

#else

!Somp parallel do private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

! Sompé& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)sé&
ISompé& reduction (max:svel)

#endif

do k =1, ks
do jJ =1, Js

theta=0.0

stheta=0.0

radius=0.0
do i = 1,imax

n=1+26

r (n) = zro(i,j, k)

p (n) = zpr(i,j,k)

u (n) = zux(i ,j, k)

v (n) = zuy(i,J, k)

w (n) = zuz(i,J, k)

f (n) = zf1(i,3,k)

xal (n) = zxa (i)

dx0 (n) = zdx (1)

xa (n) = zxa (i)

dx (n) = zdx (1)

P (n) = max(smallp,p(n))

e (n) = p(n)/(r(n)*gamm)+0.5* (u(n) **2+v (n) **2+w (n) **2)
enddo

! Do 1D hydro update using PPMLR

gr2 I--> call ppmlr (svel0O, sweep, nmin, nmax, ngeom, nleft, nright,r, p, e, g, u,

xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)

Compiler Ilst for SWEEPX1

ftn-6405 ftn: ACCEL File = sweepxl1.f90, Line =
A region starting at line 46 and ending at llne 104 was placed on the accelerator.

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin).

"

zro" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "zpr" to accelerator, free at line 104
(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepx1.f90, Line = 46
If not already present: allocate memory and copy whole array "zux" to accelerator, free at line 104
(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepxl1.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zuy" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin).

"

zuz" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "zfl" to accelerator, free at line 104
(acc_copyin).

ftn-6416 ftn: ACCEL File = sweepx1.f90, Line = 46
If not already present: allocate memory and copy whole array "sendl" to accelerator, copy back at line
104 (acc_copy) .

But Now It Runs Slower!

* Every time I've gone through this process, the
code is slower at this step than when | started.

* OpenACC is not automatic, you’ve still got
work to do...
— Improve data movement
— Adjust loop decomposition

— File bugs?

CrayPAT Profiling of OpenACC
* Craypat profiling

— Tracing: "pat_build -u <executable>" (can do APA
sampling first)

— "pat_report -0 accelerator <.xf file>"; -T also useful
e Other pat_report tables (as of perftools/5.2.1.7534)

— acc_fu flat table of accelerator events

— acc_time call tree sorted by accelerator time

— acc_time_fu flat table of accelerator events sorted by
accelerator time

— acc_show_by ct regions and events by calltree sorted
alphabetically

Run and gather runtime statistics

Table 1: Profile by Function Group and Function
Time % | Time |Imb. Time | Imb | Calls |Group
| | | Time % | | Function
| | | | | PE='HIDE'
| | | | | Thread="'HIDE'
100.0% | 83.277477 | - | -- | 851.0 |Total
| __
| 51.3% | 42.762837 | -= | -- | 703.0 |ACCELERATOR
|
[l 18.8% | 15.672371 | 1.146276 | 7.3% | 20.0 |recolor .SYNC COPYQ@li.790€not good
Il 16.3% | 13.585707 | 0.404190 | 3.1% | 20.0 |recolor .SYNC COPYQli.793€not good
[7.5% | 6.216010 | 0.873830 | 13.1% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.116
[1.6% | 1.337119 | 0.193826 | 13.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.119
| 1.6% | 1.322690 | 0.059387 | 4.6% | 1.0 [1lbm3d2p d .ASYNC COPY@1i.100
[1.0% | 0.857149 | 0.245369 | 23.7% | 20.0 |collisionb .ASYNC KERNEL@1i.586
[1.0% | 0.822911 | 0.172468 | 18.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@li.114
[0.9%5 | 0.786618 | 0.386807 | 35.2% | 20.0 |injection .ASYNC KERNEL@1i.1119
[0.9% | 0.727451 | 0.221332 | 24.9% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.118

Optimizing Data Movement

* Compilers will be cautious with data movement a likely
move more data that necessary.

— If it’s left of ‘=, it will probably be copied from the device.
— If it’s right of =/, it will probably be copied to the device.

e The CUDA Profiler can be used to measure data
movement.

* The Cray Compiler also has the CRAY_ACC_DEBUG

runtime environment variable, which will print useful
information.

— Seeman intro openacc for details.

Optimizing Data Movement

e Step 1, place a data region around the simulation
loop
— Use this directive to declare data that needs to be

copied in, copied out, or created resident on the
device.

— Use the present clause to declare places where the
compiler may not realize the data is already on the
device (within function calls, for example)

e Step 2, use an update directive to copy data
between GPU and CPU inside the data region as
necessary

Keep data on the accelerator with
acc_data region

!Sacc data copyin(cix,cil,ci2,ci3,cid4,ci5,ci6,ci7,ci8,ci9,cil10,cill, &
!$acc& cil2,cil3,cil4, r,b,uxyz,cell, rho,grad, index max,index, &
!Saccé& ciy,ciz,wet,np,streaming sbufl, &

!Saccs streaming sbufl, streaming sbuf2, streaming sbuf4, streaming sbuf5, &
ISaccé streaming sbuf’s,streaming sbuf8s, streaming sbuf9n,streaming sbuflls, &
ISaccé streaming sbuflln, streaming sbufl2n, streaming sbufl3s, streaming sbufldn, &
!Saccs streaming sbuf’e,streaming sbuf8w, streaming sbuf9e, streaming sbuflle, &
!Saccé streaming sbufllw, streaming sbufl2e,streaming sbufl3w, streaming sbufldw, &
!Saccé streaming rbufl,streaming rbuf2, streaming rbuf4, streaming rbuf5, &
!Saccé streaming rbuf’n,streaming rbuf8n, streaming rbuf9s,streaming rbuflOn, &
!Saccé& streaming rbuflls, streaming rbuflZs, streaming rbufl3n, streaming rbuflds, &
!Saccé streaming rbuf’/w,streaming rbuf8e, streaming rbuf9w,streaming rbuflOw, &
!Saccé streaming rbuflle, streaming rbufl2w,streaming rbufl3e, streaming rbuflde, &
!Saccé send e,send w,send n,send s,recv_e,recv_w,recv_n,recv_s)

do ii=1,ntimes

O 0 O

call set boundary macro press2
call set boundary micro press
call collisiona

call collisionb

call recolor

Now when we do communication we
have to update the host

!Sacc parallel loop private(k,j,1)
do j=0,local 1ly-1
do 1=0,1local 1x-1
1f (cell(i,3,0)==1) then

grad (i1,3,-1) = (1.0d0-wet) *db*press
else
grad (i,]J,-1) = db*press
end 1f
grad (i,3,1z) = grad(i,3,1z-1)
end do
end do

!'Sacc end parallel loop

!Sacc update host (grad)
call mpi barrier (mpi comm world,ierr)
call grad exchange

!Sacc update device (grad)

But we would rather not send the entire grad array back — how about

Packing the buffers on the accelerator

!Sacc data present (grad, recv _w, recv e, send e,send w,recv n,é&

ISaccé recv_s,send n,send s)
!'Sacc parallel loop
do k=-1,1z
do j=-1,1local ly
send e(Jj,k) = grad(local 1x-1,] , k)
send w(j,k) = grad(0 rJ , k)
end do
end do

!Sacc end parallel loop
!Sacc update host (send e, send w)
call mpi_irecv(rgcv_w, Bufsize(Z),mpi_double_precision,w_id, &
tag(25),mpi comm world,irequest in(25),ierr)
O O O
call mpi isend(send w, bufsize(2),mpi double precision,w id, &
tag(26), & mpi comm world, irequest out (26),ierr)
call mpi_waitall(27ireqaest_in(25),istgtus_req,ierr)
call mpi waitall(2,irequest out(25),istatus req,ierr)
!Sacc update device (recv e, recv_w)
!Sacc parallel
!'Sacc loop

do k=-1,1z
do j=-1,1local 1ly
grad(local 1x ,] , k) = recv e (j,k)

grad(_l Ij

-
Il

recv _w(Jj, k)

Final Profile - bulk of time in kernel
execution

37.9% | 236.592782 | -— -- | 11403.0 |ACCELERATOR

15.7% | 98.021619 | 43.078137 | 31.0% | 200.0 |1bm3d2p d .ASYNC KERNEL@1li.129

3.7% | 23.359080 | 2.072147 | 8.3% | 200.0 |lbm3d2p d .ASYNC_KERNEL@1li.1l27

3.6% | 22.326085 | 1.469419 | 6.3% | 200.0 |1bm3d2p d .ASYNC KERNEL@1li.132

3.0%5 | 19.035232 | 1.464608 | 7.3% | 200.0 |collisionb .ASYNC KERNEL@1li.599

2.6% | 16.216648 | 3.505232 | 18.1% | 200.0 |lbm3d2p d .ASYNC KERNEL@1li.131

2.5% | 15.401916 | 8.093716 | 35.0% | 200.0 |injection_.ASYNC KERNEL@1li.1l116

1.9% | 11.734026 | 4.488785 | 28.1% | 200.0 |recolor .ASYNC KERNEL@1li.786

0.9% | 5.530201 | 2.132243 | 28.3% | 200.0 |collisionb_.SYNC COPY@1li.593

0.8% | 4.714995 | 0.518495 | 10.1% | 200.0 |collisionb .SYNC_COPY@1li.596

0.6% | 3.738615 | 2.986891 | 45.1% | 200.0 |collisionb .ASYNC KERNEL@1li.568

0.4% | 2.656962 | 0.454093 | 14.8% | 1.0 |1bm3d2p d .ASYNC COPY@1li.1l00

0.4% | 2.489231 | 2.409892 | 50.0% | 200.0 |streaming_ exchange .ASYNC COPY(@1li.810
0.4% | 2.487132 | 2.311190 | 48.9% | 200.0 |streaming_ exchange_ .ASYNC_COPY@1li.625
0.2% | 1.322791 | 0.510645 | 28.3% | 200.0 |streaming exchange .SYNC COPY@1li.622
0.2% | 1.273771 | 0.288743 | 18.8% | 200.0 |streaming exchange .SYNC COPY@1li.574
0.2% | 1.212260 | 0.298053 | 20.0% | 200.0 |streaming exchange .SYNC COPY@1li.759
0.2% | 1.208250 | 0.422182 | 26.3% | 200.0 |streaming exchange .SYNC COPY@1li.806
0.1% | 0.696120 | 0.442372 | 39.5% | 200.0 |streaming exchange_ .ASYNC_KERNEL@1li.625
0.1% | 0.624982 | 0.379697 | 38.4% | 200.0 |streaming exchange .ASYNC_ KERNEL@1li.525

Optimizing Kernels

 The compiler has freedom to schedule loops
and kernels as it thinks is best, but the
programmer can override this.

* First you must know how the work was
decomposed.

— Feedback from compiler at build time

— Feedback from executable at runtime
— CUDA Profiler

Adjusting Decomposition

e Adjust the number of gangs, workers, and or
vector length on your parallel or
kernels region

— num_gangs, num_workers, vector_length

* Add loop directives to individual loop
declaring them as gang, worker, or vector
parallelism

Further Optimizing Kernels

Use loop collapse () tomerge loops and
increase parallelism at particular levels

Use compiler’s existing directives regarding loop
optimizations

— Loop unrolling

— Loop fusion/fission

— Loop blocking

Ensure appropriate data access patterns

— Memory coalescing, bank conflicts, and striding are
just as important with OpenACC as CUDA/OpenCL

— This will likely help when using the CPU as well.

Interoperability

* OpenACC plays well with others; CUDA C,
CUDA Fortran, Libraries

* |f adding OpenACC to an existing CUDA code,
the deviceptr data clause allows using
existing data structures.

* |f adding CUDA or a library call to an OpenACC
code, use host dataanduse deviceto
declare CPU or GPU memory use.

SHARING DATA BETWEEN
OPENACC AND CUDA FOR C

OpenACC & CUDA C

e The Plan

— Write a CUDA C Kernel and a Launcher function
that accepts device pointers.

— Write a C or Fortan main that uses OpenACC
directives to manage device arrays

— Use acc host data pragma/directive to pass
device pointer to launcher

— Build .cu with nvcc and rest per usual

e Supported PEs: Cray, PGl

OpenACC C-main

* Notice that there is
no need to create
device pointers

* Use acc data region
to allocate device
arrays and handle
data movement

*Use acc parallel loop
to populate device
array.

* Use acc host_data
region to pass a device
pointer for array

/* Allocate Array On Host */
a = (double*)malloc(n*sizeof (double)) ;

/* Allocate device array a. Copy data both to
and from device. */

#pragma acc data copyout(a[0:n])
{
#pragma acc parallel loop
for (i=0; i<n; i++)
{
af[i] = i+1;
}

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);

/* Use device array when calling
scaleit launcher */

#pragma acc host data use device(a)

{

ierr = scaleit launcher (a, &n, &rank);

OpenACC Fortran-main

* Notice that there is
no need to create
device pointers

* Use acc data region
to allocate device
arrays and handle
data movement

* Use acc parallel loop
to populate device
array.

* Use acc host_data
region to pass a device
pointer for array

integer,parameter :: n=16384

real(8) :: a(n)

1Sacc data copy(a)
!1Sacc parallel loop
do i=1,n
a(i) = i
enddo
!Sacc end parallel loop

!Sacc host data use _device(a)

ierr = scaleit launcher(a, n, rank)

!Sacc end host data

!Sacec end data

SHARING DATA BETWEEN
OPENACC AND LIBSCI

OpenACC and LibSCI

e The Plan:

— Use OpenACC to manage your data

— Possible use OpenACC for certain regions of the
code

— Use LibSCl’s expert interface to call device
routines

e Supported PEs: Cray

OpenACC with LibSCI - C

* OpenACC data
region used to allocate
device arrays for A, B,
and C and copy data to/
from the device.

#pragma acc data copyin(a[0:1da*k],b
[0:n*1db]) copy(c[0:1dc*n])
{

#pragma acc host data use device(a,b,c)
{
dgemm acc
('n','n' ,m,n,k,alpha,a,lda,b,1ldb,beta
rc,1dec);

}

OpenACC with LibSCI -
Fortran

* OpenACC data
region used to allocate
device arrays for A, B,
and C and copy data to/
from the device.

!Sacc data copy(a,b,c)
!Sacc host data use device(a,b,c)

Call dgemm acc
('n','n' ,m,n,k,alpha,a,lda,b,1db,beta
,c,ldc)

!Sacc end host data
'Sacc end data

Interoperability Advice

* OpenACC provides a very straightforward way
to manage data structures without needing 2

pointers (host & device), so use it at the top
level.

* CUDA provides very close-to-the-metal
control, so it can be used for very highly tuned
kernels that may be called from OpenACC

 Compilers do complex tasks such as
reductions very well, so let them.

